Semi-global and local
alignment and gap penalties

UNIVERSITY OF

& MARYLAND

Maximization vs. Minimization

Edit distance:

cost(z;,y;) + OPT(¢ — 1,7 — 1) match x;, y;
OPT(¢,7) = min { cgap + OP”
Cgap + OP]

(21— 1,7) Xi is unmatched

(2,7 — 1) yj is unmatched

Sequence Similarity: replace the min with a max — find the highest-scoring
alignment. Gap costs and bad matches usually get a negative “score”.

OPT(i,j) = max

score(

xiayj) T+ OPT(Z — 1,7 — 1)

Sgap T OP1 (Z _ 17])

Sgap

- OPT(i,j — 1)

gap penalty = gap score (probably negative)
match cost = match score

Alignment Categories

Global: Require an end-to-end alignment of x,y

X
y

L ||

Semi-global (glocal): Gaps at the beginning or end of x or y are
free — useful when one string is significantly shorter than the other
or for finding overlaps between strings

X — X ss—

y i or y m_i

Local: Find the highest scoring alignment between x’ a substring
of X and y’ a substring of y — useful for finding similar regions in
strings that may not be globally similar

X*
y

Alignment Categories Motivation

Global: x and y are similar proteins from closely-related species

x—

I |
y

Semi-global (glocal): x and y are sequencing reads we are
trying to assemble. We want to find reads where the right end (suffix)
of one matches the left end (prefix) of another.

X X
* mm
y or y

Alignment Categories Motivation

It's possible and somewhat
common for specific domains to
be conserved, but not the entire

protein sequence / structure.

Local: x and y are similar proteins from potentially distantly
related species. We don'’t expect the entire protein to be
conserved, but certain “"domains” should be.

X

y

Semi-global Alignment Example

Semi-global (glocal): Gaps at the beginning or end of x or y are

free. Useful when one one string is significantly shorter than the
other or we want to find an overlap between the sufttix of one string
and a prefix of the other

sometimes called “cost-free-ends” or “fitting” alignment

X __x
y

sometimes called “overlap” alignment

Motivation:

Useful for finding similarities that global

alignments wouldn’t. Also, can view “read

mapping” as a variant of the semi-global

alignment problem. Want to align entire read

but it's a tiny fraction of the genome. Note:

won't use semi-global alignment with the full

genome for read mapping in practice.

Semi-global Alignment Example

Semi-global (glocal): Gaps at the beginning or end of x or y are
free — one useful case is when one string is significantly shorter than
the other

sometimes called “cost-free-ends” or “fitting” alignment

X

We'll discuss the “fitting” variant for in the next few
slides for simplicity, but the same basic idea
applies tfor the “overlap” variant as well.

Recall: Global Alignment Matrix

OPT{i,j) contains the score for the best alignment between:

the first i characters of string x [prefix i of x]
the first j character of string y [prefix j of y] NOTE: observe the non-standard

notation here; OPT(i,j) is referring
to column i, row | of the matrix.

OPT(i-\@
9 |99 \\
8 | 8¢ \
7 |79
6 |6 ‘ OPT('!J)
g i'~__§~§=-= ___’///
Yy J 5 | 5¢g
e AN OPT(i, j-1)
3 |39 \\//
2 | 29 B OPT(i-1, j-1)
1 |19

0 |0 1920|3049 |59 |6g |79 |8g]|9g | 109 | 119 | 129

o 1 2 3 4 5 6 7 8 9 10 11 12

How to do semi-global alignment”?

M-*Sgap
S'Sgap
2'Sgap
1-8gap
0 1-Sgap = 2'Sgap = 3'Sgap N*Sgap

Start with the original global alignment matrix

How to do semi-global alignment”?

M*Sgap

0 0 0 0 0

N X
change the base case — allow gaps beforey

How to do semi-global alignment”?

M*Sgap O(n,m)
3:Sgap
2'Sgap
1-Sgap
0 0 0 0 0
X

start traceback at max OPT(i,m) — this allows gaps after y; why?

O<ign

Semi-global alignment example

and this gap aftery

m'Sgap

3-Sgap
2*Sgap /
1-Sgap

0 0 0 0

/ O(n,m)

We allow this gap before 'y

Semi-global Alignment

What is the and different between the "global”
and semi-global (“fitting”) alignment problems?

*assuming |y| < |x| and we are “fitting” y into X

Global Semi-global (“fitting”)
fscore(x,-,yj) +OPT(i—1,5—1) (Score(xi,yj) +OPT(i—1,57—1)
OPT(7,j) = max { Sgap + OPT(i — 1, 7) OPT(7,j) = max { Sgap + OPT(i — 1, 7)
| Sgap + OPT(i,5 — 1) | Sgap T OPT(i,j — 1)
Base case: OPT(i,0) = i X Sgap Base case: OPT(i,0) =0
Traceback starts at OPT(n,m) Traceback starts at rgiax OPT(],m)
<j<n

Semi-global Alignment

The recurrence remains the same, we only change
the base case of the recurrence and the origin of the
backtrack

1) Ignore gaps before x —_— change ba.se case;
OPT(0,)) =0
—_— change traceback;
start from max OPT(n,j)

O<j<m

2) Ignore gaps after x

change base case;

—_
3) Ignore gaps before y OPT(i.0) = 0

change traceback;
start from max OPT(i,m)

O<i<n

4) Ignore gaps after y ———

Semi-global Alignment

lgnore gaps before x

;
2

3)
4) Ignore gaps aftery

lgnore gaps after x

)
)

lgnore gaps before y

Types of semi-global alignments

use mods 3&4 use mods 1&4
e X

x* y o

y
use mods 1&2 use mods 2&3
Xq X

y : y

Local Alignment
d
D —

Local alignment between a and b: Best alignment between a
subsequence of a and a subsequence of b.

q 1q00

Pas

YP_003639421 “

Thermincola potens :
putative PRS-PAC LBS_pair

inil | . hi -

zp_06383321 (el —

Arthrospira platen

malti-sensor hybri .

HisKA REC
3 seauences Qe e e = el =
Arthrospira ’ K
tuo-corgonent hubr FhlA HATPase_c

2 sequences e ==

Arthrospira platen
two-component hybr

Motivation:

HiskA_2
3 Sequences

! =)=
Many genes are

zignal transductio
GGDEF

o composed of

Ozcillatoriales
PleD-like protein

¢ Seone domains, which are

diguanylate cuyclas

EQL
eqUENces T —
2 8ag — subsequences that

Desulfuromonadales
diguanylate cuclas

6 Secte perform a particular

diguanylate cyclas

i function.

GGDEF +amily prote

Local Alignment

Best alignment between
a suffix of x[1..5] and a
suffix of y[1 ..|5]

. Yeolo
New meaning of entry of

A 8 |0
matrix entry: G 7|0

T 6 |0 */
OPT(i, j) = best score | rele
G 4|0
between: o
some suffix of x[1...]] al2 | o
some suffix of y[1...]] =PIk

0 0 0 0 0 0 0 0 0 0 0 0 0 0

o/1 2 3 4 5 6 7 8 9 10 11 12
A A G G T A T G A A T C

Same base-case -_—
trick we used in semi-global alignment

X

Local Alignment

New meaning of entry of matrix

entry:
Best alignment between

a suffix of x[1..5] and a
suffix of y[1 "|5]

OPT(i, j) = best score between: y

some suffix of x[1...]]

some suffix of y[1...]]

O 4 4 O >» O

o - N W £ o (o) ~N (o) ©

What else do we need to |
change to allow local
alignments?

Hint: The empty alignment is
always a valid local alignment! ﬁ

Oloj]JoOo|]oO

o o o o o o o o o o o

0
8 9 10 11 12
G A A T C

) X

& | O
- 0| O

Same base-case
trick we used in semi-global alignment

How do we fill in the local

alignment matrix?

score(x;,y;) + OPT(i — 1,7 —1) (l)

OPT(i, j) = max { &

0

(1), (2), and (3): same cases as before:
match x and y, gap iny, gap in x

New case: O allows you to say the
best alignment between a suffix of x
and a suffix of y is the empty
alignment.

Lets us ‘“‘start over’

- OPT(i — 1,)
Seap + OPT(i,7 — 1)

3/ cC 9

A 8
G 7
T 6
|T5
G 4
c 3
A 2

A 1

0

(2)
(3)

Best alignment between
a suffix of x[1..5] and a
suffix of y[1 "15]

0

0

0

o o o o o o o o o o o

> N o

G w o
QO | O
- o1 | ©
> o | ©
- ~N | o
> o | ©

10 11 12
A T C

Local Alignment

® |nitialize first row and first column to be O.

® The score of the best local alignment is the largest
value in the entire array.

® To find the actual local alignment:

® start at an entry with the maximum score
® traceback as usual
® stop when we reach an entry with a score of O

Local Alignment in the DAG

framework

Local Alignment in the DAG

framework
Add O score edge

from the source
to every node
O—~O—(O—
‘ .

Local Alignment in the DAG

framework g O)
Add O score edge SCOTe edge
from every vertex to

. L LLELY 9
.
ot Y, .

from the source I
the target vertex
[0 every vertex

> 4
Q. .°
Cy=="
L - -
'-,.—-—‘ e
i NI

Local Alignment Example #1

local align(“AGCGTAG"”, “CTCGTC")

* A G C G T A G
* 0 0 0 0 0 0 0 0
C 0 0 0 10 3 0 0 0
T 0 0 0 3 5 13 6 0
C 0 0 0 ™10 3 6 8 1
G 0 0 10 320 13 6 18
T 0 0 3 5 13™30 23 16
C 0 0 0 13 6 23 25 18
Score(match) = 10 Note: this table written top-to-bottom
Score(mismatch) = -5 instead of bottom-to-top

Score(gap) = -7

Local Alignment Example #2

local align(“bestoftimes”, “soften”)

* b = S t O f t 1 m & S
* 0 0 0 _ 0 0 0 0 0 0 0 0 0
S 0 0 0 10« 3\ 0 0 0 0 0 0 10
O 0 0 0 3 5 13 . 6 0 0 0 0 3
f 0 0 0 0 0 6 23\ 16 9 2 0 0
t 0 0 0 0 10 3 16 33 26 19 12 5
e 0 0 10 3 3 5 O 26 28 21 29 22
n 0 0 3 5 0 0 2 19 21 23 22 24
Score(match) = 10 Note: this table written top-to-bottom
Score(mismatch) = -5 instead of bottom-to-top

Score(gap) = -7

More Local Alignment Examples geeretnaten) = 10

Score(mismatch) = -5
Score(gap) = =7

local align(“catdogfish”, “dog”)

* C a t d o) g f 1 S h
*x 0 0 0 0,0 0 0 0 0 0 O
d 0 0 0 0710, 3 0 0 0 0 0
o 0 0 0 0 3>20.13 6 0 0 0
g 0 0 0 0 0 13 30 23 16 9 2

local align(“mississippi”, “issp”)

* m 1 S S 1 S S 1 P p 1
* 0 0 0 0 O‘\ 0 0 0 0 0 0 0
i 0 0 10 3 0 10‘\ 3 0 10 3 0 10
S 0 0 3 20 13 6 20‘\13 6 5 0 3
S 0 0 0 13 30 23 16 304—23‘\16 9 2
P 0 0 0 6 23 25 18 23 25 33 26 19

local align(*”aaaa”, *“aa"”)

* a a a a

0 0 0 0 0
~

0O 10 10 10‘\10

0O 10 20 20 20

)

Local / Global Recap

Alignment score sometimes called the “edit distance” between two
strings.

Edit distance is sometimes called Levenshtein distance.

Algorithm for local alignment is sometimes called “Smith-Waterman”

Algorithm for global alignment is sometimes called “Needleman-
Wunsch”

Same basic algorithm, however.

Underlies BLAST

General Gap Penalties

AAAGAATTCA VS AAAGAATTCA
A-A-A-T-CA ' AAA----TCA

These have the same score, but the second one is often more
plausible.

A single insertion of “GAAT” into the first string could change
it into the second — Biologically, this is much more likely as x
could be transformed into y in “one fell swoop”.

® Currently, the score of a run of k gaps is sgap * k

® |t might be more realistic to support general gap penalty, so
that the score of a run of k gaps is Igscore(k)| < [(sgap x K)l.

® Then, the optimization will prefer to group gaps together.

General Gap Penalties — The
Problem

AAAGAATTCA VS AAAGAATTCA
A-A-A-T-CA ' AAA----TCA

Previous DP no longer works with general gap penalties.

Why"?

General Gap Penalties — The
Problem

AAAGAATTCA VS AAAGAATTCA
A-A-A-T-CA ' AAA----TCA

The score of the last character depends on details of the
previous alignment:

AAAGAtC AAAGAjTC

AAA - — |- vS. AAA - -

We need to “know” how long a final run of gaps is in order
to give a score to the last subproblem.

General Gap Penalties — The
Problem

The score of the last character depends on details of the
previous alignment:

Knowing the optimal alignment at the substring
ending

AAA - —|-- vS. AAA-——

AAAGAIAC AAAGAfiTC

Doesn't let us simply build the optimal alignment
ending

Three Matrices

We now keep 3 different matrices:

M(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a character-
character match or mismatch.

X(i,]) = score of best alignment of x[1..i] and y[1..j] ending with a gap in X.

Y(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in Y.

M(i—1,7—1)
M(i, j) = score(x;,y,;) + max < X(i — 1,7 — 1)
Y(Z o 17] o 1)

2

M(z,5 — k) + gscore(k) for 1 <k <

X(2,7) = max <
(4, 7) * \Y(i,j — k) + gscore(k) for 1<k <)

(M(i — k,j) + gscore(k) for 1 <k <i
X(i —k,j) + gscore(k) for 1<k <i

\

Y(i, j) = max <

The M Matrix

We now keep 3 different matrices:

M(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a character-

character match or mismatch.

X(i,]) = score of best alignment of x[1..i] and y[1..j] ending with a gap in X.

Y(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in Y.

By definition, alignment
ends in a match/mismatch.

\l M(Z o 17] N 1)
M(z, j) = score(z;,y;) + max { X(i — 1,5 — 1)
Y(Z — 1 7] o)

AN

Any kind of alignment is alloweo
betore the match/mismatch.

The X (and Y) matrices

.k k decides how long to make

G ——— the gap.

We have to make the whole

gap at once in order to
l know how to score it.

(M(z',j — k) + gscore(k) for1 <k <j

X (i,) = <
(z J) tax Y(i)j — k) + gscore(k‘) for 1 <k<j

T This case is automatically
i k - handled. |
X Ge——— L
X I . o e
-CGT
! ik cf y GCGTG
j-k)

Running Time for Gap Penalties

y

M(Z o 17] o 1)
M(i,) = score(z;,y;) + max X(i — 1,5 — 1)
Y(i—1,7—1)

\

(M(i,j — k) + gscore(k) for 1 <k < j

X(i,j) =maxq " |
\Y(4,j — k) +gscore(k) for 1<k <j

(M(z' — k,j) + gscore(k) for 1<k <1

Y (i,) =
(i,j) = max <\X(z’ — k,j) + gscore(k) forl1<k<1

Final score is max {M(n,m), X(n,m), Y(n,m)}.
How do you do the traceback?
Runtime:
e Assume [XI = [Y| = n for simplicity: 3n2 subproblems
® 2n2subproblems take O(n) time to solve (because we have to try all k)

= O(n3) total time

-gscore(k)

Affine Gap Penalties

® O(n3) for general gap penalties is usually too slow...

® \We can still encourage spaces to group together using a special
case of general penalties called affine gap penalties:

Ostart = the cost of starting a gap

Jextend = the cost of extending a gap by one more space

QSCOI’e(k) = Ostart T (k-1) x Jextend

less restrictive = more restrictive

General gap penalty Convex gap penalty Affine gap penalty
~ ~
D D
) o
O O
w p)
= = \
k-1)*Goten
// () Qextend
Ostart

length of gap length of gap 1 length of gap

Benetit ot Affine Gap Penalties

® Same idea of using 3 matrices, but now we don‘t need to search
over all gap lengths, we just have to know whether we are
starting a new gap or not.

Affine Gap as Finite State Machine

match(i,j?

gs
match (1,])

J match(i,))
/,\ 4/ gs
ge gs e d \79

*

Affine Gap Penalties

M(Z - 17,7 - 1)

M(2, j) = score(x;,y;) + max ¢ X(¢ — 1,5 — 1) If previous
alignment ends in

(rEIei)vTeaet,:h Y(Z — 1,7 =) (mis)match, this
x and y f\ ~_Isanew gap
Zstart T M(Z,] — 1) If we're using the

Lo o X matrix, then
X(Zaj) — INaX § Zextend }E(Zaj _ 1) " we're extending a

gap in X Ootart + Y(Z,] o 1) gap.

/\If we’re using the

M7 — 1.7 Y matrix, then
Estart (»J) we're starting a

Y(Z,j) — INaX § start T X(i — 1,j) new gap in this
gap iny O oxtond + Y(Z o 17]) string.

Affine Base Cases (Global)

M(O, i) =“score of best alignhment between 0 characters of x and i
characters of y that ends in a match” = -00 because no such alignment

can exist.

X(0, i) =“score of best alighment between 0 characters of x and i
characters of y that ends in a gap in x” = gap start + (i-1) X gap extend

because this alignment looks like:

YYYYYYYYY

X(i, 0) =“score of best alignment between i characters of x and 0

characters of y that ends in a gap in X" = -00
AXXXXXXXX=-

+ not allowed

M(i, 0) = M(0,i) and Y(0, i) and Y (i, 0) are computed using the same logic

as X(i, 0) and X(0, i)

Affine Gap Runtime

* 3mn subproblems
* FEach one takes constant time
* Total runtime O(mn):

* back to the run time of the basic running time.

Traceback

* Arrows now can point between matrices.
* The possible arrows are given, as usual, by the recurrence.

* E.g.What arrows are possible leaving a cell in the M matrix?

Why do you “need” 3 functions?

 Alternative WRONG algorithm:

M(i,]) = max(
M(i-1, j-1) + cost(xi, Vj3),
M(i-1, j) +(9start if Arrow(i-1, j) != €—, else Jgextend),
M(j, i-1) + (9starr i1f Arrow(i, j-1) !=¢ , else gextend)

WRONG Intuition: we only need to know whether we are starting a gap or
extending a gap.

The arrows coming out of each subproblem tell us how the best alighment ends, so we
can use them to decide if we are starting a new gap.

The best alignment
up to this cell ends
in a gap.

PROBLEM:The best alignment for strings
e x[I..i] and y[I..j] doesn’t have to be used

The best alignment in the best alignment between

up to this cell ends))
in & match. x[l..i+1] and y[I..j+I]

Why 3 Matrices: Example
match = 5, mismatch = -2, gap = -1, gap _start = -10

x=CARTS, y=CAT

CART OPT(4, 3) = optimal score=15-10=5
CA-T /Y
CARTS WRONG(5,3) = 15-10- 10= -5
CA-T-

CARTS OPT(5,3)=10-2-10-1 =-3
CAT--

this is why we need to keep the X and Y matrices around.
they tell us the score of ending with a gap in one of the sequences.

Side Note: Lower Bounds

* Suppose the lengths of x and y are n.

 Clearly, need at least {)(n) time to find their global alignment
(have to read the strings!)

* The DP algorithms show global alignment can be done in O(n2) time.

* A trick called the “Four Russians Speedup” can make a similar dynamic
programming algorithm run in O(n2/ log n) time.
* We probably won’t talk about the Four Russians Speedup.
e The important thing to remember is that only one of the four authors is Russian...

(Alrazaroy, Dinic, Kronrod, Faradzeyv, 1970)

* Open questions: Can we do better? Can we prove that we can’t do
better? No#

#: Backurs, Arturs, and Piotr Indyk. "Edit distance cannot be computed in strongly subquadratic time (unless SETH is false)." Proceedings of the forty-
seventh annual ACM symposium on Theory of computing. ACM, 2015. *

Recap

* Local alignment: extra “0” case.
* General gap penalties require 3 matrices and O(n?) time.

* Affine gap penalties require 3 matrices, but only O(n?) time.

